9209: ABC288 —— D - Range Add Query
[Creator : ]
Description
### Problem Statement
You are given an integer sequence of length $N$, $A = (A_1, A_2, \ldots, A_N)$, and a positive integer $K$.
For each $i = 1, 2, \ldots, Q$, determine whether a contiguous subsequence of $A$, $(A_{l_i}, A_{l_i+1}, \ldots, A_{r_i})$, is a good sequence.
Here, a sequence of length $n$, $X = (X_1, X_2, \ldots, X_n)$, is good if and only if there is a way to perform the operation below some number of times (possibly zero) to make all elements of $X$ equal $0$.
> Choose an integer $i$ such that $1 \leq i \leq n-K+1$ and an integer $c$ (possibly negative). Add $c$ to each of the $K$ elements $X_{i}, X_{i+1}, \ldots, X_{i+K-1}$.
It is guaranteed that $r_i - l_i + 1 \geq K$ for every $i = 1, 2, \ldots, Q$.
You are given an integer sequence of length $N$, $A = (A_1, A_2, \ldots, A_N)$, and a positive integer $K$.
For each $i = 1, 2, \ldots, Q$, determine whether a contiguous subsequence of $A$, $(A_{l_i}, A_{l_i+1}, \ldots, A_{r_i})$, is a good sequence.
Here, a sequence of length $n$, $X = (X_1, X_2, \ldots, X_n)$, is good if and only if there is a way to perform the operation below some number of times (possibly zero) to make all elements of $X$ equal $0$.
> Choose an integer $i$ such that $1 \leq i \leq n-K+1$ and an integer $c$ (possibly negative). Add $c$ to each of the $K$ elements $X_{i}, X_{i+1}, \ldots, X_{i+K-1}$.
It is guaranteed that $r_i - l_i + 1 \geq K$ for every $i = 1, 2, \ldots, Q$.
Input
### Input
The input is given from Standard Input in the following format:
```
$N$ $K$
$A_1$ $A_2$ $\ldots$ $A_N$
$Q$
$l_1$ $r_1$
$l_2$ $r_2$
$\vdots$
$l_Q$ $r_Q$
```
The input is given from Standard Input in the following format:
```
$N$ $K$
$A_1$ $A_2$ $\ldots$ $A_N$
$Q$
$l_1$ $r_1$
$l_2$ $r_2$
$\vdots$
$l_Q$ $r_Q$
```
Output
### Output
Print $Q$ lines. For each $i = 1, 2, \ldots, Q$, the $i$\-th line should contain `Yes` if the sequence $(A_{l_i}, A_{l_i+1}, \ldots, A_{r_i})$ is good, and `No` otherwise.
Print $Q$ lines. For each $i = 1, 2, \ldots, Q$, the $i$\-th line should contain `Yes` if the sequence $(A_{l_i}, A_{l_i+1}, \ldots, A_{r_i})$ is good, and `No` otherwise.
Constraints
### Constraints
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq K \leq \min\lbrace 10, N \rbrace$
- $-10^9 \leq A_i \leq 10^9$
- $1 \leq Q \leq 2 \times 10^5$
- $1 \leq l_i, r_i \leq N$
- $r_i-l_i+1 \geq K$
- All values in the input are integers.
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq K \leq \min\lbrace 10, N \rbrace$
- $-10^9 \leq A_i \leq 10^9$
- $1 \leq Q \leq 2 \times 10^5$
- $1 \leq l_i, r_i \leq N$
- $r_i-l_i+1 \geq K$
- All values in the input are integers.
Sample 1 Input
7 3
3 -1 1 -2 2 0 5
2
1 6
2 7
Sample 1 Output
Yes
No
The sequence $X:=(A_1,A_2,A_3,A_4,A_5,A_6)=(3,−1,1,−2,2,0)$ is good. Indeed, you can do the following to make all elements equal 0.
On the other hand, for the sequence $(A_2,A_3,A_4,A_5,A_6,A_7)=(−1,1,−2,2,0,5)$, there is no way to make all elements equal 00, so it is not a good sequence. Thus, the second line should contain No.
- First, do the operation with i=2,c=4, making X=(3,3,5,2,2,0).
- Next, do the operation with i=3,c=−2, making X=(3,3,3,0,0,0).
- Finally, do the operation with i=1,c=−3, making X=(0,0,0,0,0,0).
On the other hand, for the sequence $(A_2,A_3,A_4,A_5,A_6,A_7)=(−1,1,−2,2,0,5)$, there is no way to make all elements equal 00, so it is not a good sequence. Thus, the second line should contain No.
Sample 2 Input
20 4
-19 -66 -99 16 18 33 32 28 26 11 12 0 -16 4 21 21 37 17 55 -19
5
13 16
4 11
3 12
13 18
4 10
Sample 2 Output
No
Yes
No
Yes
No