Problem9202--ABC287 —— E - Karuta

9202: ABC287 —— E - Karuta

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

### Problem Statement

You are given $N$ strings consisting of lowercase English letters. Let $S_i$ be the $i$-th $(i = 1, 2, \dots, N)$ of them.

For two strings $x$ and $y$, $\mathrm{LCP}(x, y)$ is defined to be the maximum integer $n$ that satisfies all of the following conditions:

-   The lengths of $x$ and $y$ are both at least $n$.
-   For all integers $i$ between $1$ and $n$, inclusive, the $i$-th character of $x$ and that of $y$ are equal.

Find the following value for all $i = 1, 2, \dots, N$:

-   $\displaystyle \max_{i \neq j} \mathrm{LCP}(S_i, S_j)$

Input

### Input

The input is given from Standard Input in the following format:

```
$N$
$S_1$
$S_2$
$\vdots$
$S_N$
```

Output

### Output

Print $N$ lines. The $i$\-th $(i = 1, 2, \dots, N)$ line should contain $\displaystyle \max_{i \neq j} \mathrm{LCP}(S_i, S_j)$.

Constraints

### Constraints

-   $2 \leq N \leq 5 \times 10^5$
-   $N$ is an integer.
-   $S_i$ is a string of length at least $1$ consisting of lowercase English letters $(i = 1, 2, \dots, N)$.
-   The sum of lengths of $S_i$ is at most $5 \times 10^5$.

Sample 1 Input

3
abc
abb
aac

Sample 1 Output

2
2
1
LCP($S_1,S_2$)=2,LCP($S_1,S_3$)=1, and LCP($S_2,S_3$)=1.

Sample 2 Input

11
abracadabra
bracadabra
racadabra
acadabra
cadabra
adabra
dabra
abra
bra
ra
a

Sample 2 Output

4
3
2
1
0
1
0
4
3
2
1

Source/Category