Problem9199--ABC287 —— B - Postal Card

9199: ABC287 —— B - Postal Card

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

### Problem Statement

You are given $N$ strings of length six each, consisting of digits. Let $S_i$ be the $i$-th $(i = 1, 2, \dots, N)$ of them.

You are also given $M$ strings of length three each, consisting of digits. Let $T_j$ be the $j$-th $(j = 1, 2, \dots, M)$ of them.

Find the number of strings among $S_1, S_2, \dots, S_N$ whose last three characters coincide with one or more of $T_1, T_2, \dots, T_M$.

Input

### Input

The input is given from Standard Input in the following format:

```
$N$ $M$
$S_1$
$S_2$
$\vdots$
$S_N$
$T_1$
$T_2$
$\vdots$
$T_M$
```

Output

### Output

Print the answer.

Constraints

### Constraints

-   $1 \leq N, M \leq 1000$
-   $N$ and $M$ are integers.
-   $S_i$ is a string of length $6$ consisting of digits, for all $i = 1, 2, \dots, N$.
-   $T_j$ is a string of length $3$ consisting of digits, for all $j = 1, 2, \dots, M$.

Sample 1 Input

3 3
142857
004159
071028
159
287
857

Sample 1 Output

2
The last three characters of $S_1$ are 857, which coincide with $T_3$.
The last three characters of $S_2$ are 159, which coincide with $T_1$.
The last three characters of $S_3$ are 028, which do not coincide with $T_1, T_2$, or $T_3$.
Thus, the answer is 2.

Sample 2 Input

5 4
235983
109467
823476
592801
000333
333
108
467
983

Sample 2 Output

3

Sample 3 Input

4 4
000000
123456
987111
000000
000
111
999
111

Sample 3 Output

3

Source/Category