Problem9186--ABC284 —— E - Count Simple Paths

9186: ABC284 —— E - Count Simple Paths

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given a simple undirected graph with $N$ vertices numbered $1$ to $N$ and $M$ edges numbered $1$ to $M$. Edge $i$ connects vertex $u_i$ and vertex $v_i$. The degree of each vertex is at most $10$.  
Let $K$ be the number of simple paths (paths without repeated vertices) starting from vertex $1$. Print $\min(K, 10^6)$.

Input

The input is given from Standard Input in the following format:

```
$N$ $M$
$u_1$ $v_1$
$u_2$ $v_2$
$\vdots$
$u_M$ $v_M$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 2 \times 10^5$
-   $0 \leq M \leq \min \left(2 \times 10^5, \frac{N(N-1)}{2}\right)$
-   $1 \leq u_i, v_i \leq N$
-   The given graph is simple.
-   The degree of each vertex in the given graph is at most $10$.
-   All values in the input are integers.

Sample 1 Input

4 2
1 2
2 3

Sample 1 Output

3
We have the following three paths that count. (Note that a path of length 0 also counts.)
  • Vertex 1;
  • vertex 1, vertex 2;
  • vertex 1, vertex 2, vertex 3.

Sample 2 Input

4 6
1 2
1 3
1 4
2 3
2 4
3 4

Sample 2 Output

16

Sample 3 Input

8 21
2 6
1 3
5 6
3 8
3 6
4 7
4 6
3 4
1 5
2 4
1 2
2 7
1 4
3 5
2 5
2 3
4 5
3 7
6 7
5 7
2 8

Sample 3 Output

2023

Source/Category