Problem9176--ABC283 —— G - Partial Xor Enumeration

9176: ABC283 —— G - Partial Xor Enumeration

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

For a sequence of non-negative integers $(a _ 1,a _ 2,\ldots,a _ n)$, let us define its $\operatorname{xor}$ as the integer $X$ such that, for all non-negative integer $j$:

-   the $2^j$s place of $X$ is $1$ if and only if there is an odd number of elements among $a _ 1,\ldots,a _ n$ whose $2^j$s place is $1$.

You are given a sequence of non-negative integers $A=(A _ 1,A _ 2,\ldots,A _ N)$ of length $N$.

Let $\lbrace s _ 1,s _ 2,\ldots,s _ k\rbrace\ (s _ 1\lt s _ 2\lt\cdots\lt s _ k)$ be the set of all non-negative integers that can be the $\operatorname{xor}$ of a not-necessarily-contiguous (possibly empty) subsequence of $A$.

Given integers $L$ and $R$, print $s _ L,s _ {L+1},\ldots,s _ R$ in this order.

Input

The input is given from Standard Input in the following format:

```
$N$ $L$ $R$
$A _ 1$ $A _ 2$ $\ldots$ $A _ N$
```

Output

Print $s _ i\ (L\leq i\leq R)$ in ascending order of $i$, separated by spaces.

Constraints

-   $1\leq N\leq2\times10^5$
-   $0\leq A _ i\lt2^{60}\ (1\leq i\leq N)$
-   $1\leq L\leq R\leq k$
-   $R-L\leq2\times10^5$
-   All values in the input are integers.

Sample 1 Input

4 1 8
2 21 17 21

Sample 1 Output

0 2 4 6 17 19 21 23
There are 14 not-necessarily-contiguous subsequences of A: (),(2),(17),(21),(2,17),(2,21),(17,21),(21,17),(21,21),(2,17,21),(2,21,17),(2,21,21),(21,17,21), and (2,21,17,21), whose xor⁡xors are as follows.
  • The xor⁡xor of () is 0.
  • The xor⁡xor of (2) is 2.
  • The xor⁡xor of (17) is 17.
  • The xor⁡xor of (21) is 21.
  • The xor⁡xor of (2,17) is 19.
  • The xor⁡xor of (2,21) is 23.
  • The xor⁡xor of (17,21) is 4.
  • The xor⁡xor of (21,17) is 4.
  • The xor⁡xor of (21,21) is 0.
  • The xor⁡xor of (2,17,21) is 6.
  • The xor⁡xor of (2,21,17) is 6.
  • The xor⁡xor of (2,21,21) is 2.
  • The xor⁡xor of (21,17,21) is 17.
  • The xor⁡xor of (2,21,17,21) is 19.
Therefore, the set of all non-negative integers that can be the ⁡xor of a subsequence of A is {0,2,4,6,17,19,21,23}.

Sample 2 Input

4 3 7
2 21 17 21

Sample 2 Output

4 6 17 19 21

Sample 3 Input

5 1 1
0 0 0 0 0

Sample 3 Output

0

6 21 21
88 44 82 110 121 80

41

Sample 4 Input

12 26 48
19629557415 14220078328 11340722069 30701452525 22333517481 720413777 11883028647 20926361028 24376768297 720413777 27999065315 13558621130

Sample 4 Output

13558621130 14220078328 14586054825 15518998043 15970974282 16379590008 17091531049 17412316967 17836964726 18263536708 18965057557 19629557415 20282860278 20926361028 21302757781 21908867832 22333517481 22893781403 23595304394 23723463544 24376768297 24885524507 25261923402

EDITORIAL

Source/Category