9176: ABC283 —— G - Partial Xor Enumeration
[Creator : ]
Description
For a sequence of non-negative integers $(a _ 1,a _ 2,\ldots,a _ n)$, let us define its $\operatorname{xor}$ as the integer $X$ such that, for all non-negative integer $j$:
- the $2^j$s place of $X$ is $1$ if and only if there is an odd number of elements among $a _ 1,\ldots,a _ n$ whose $2^j$s place is $1$.
You are given a sequence of non-negative integers $A=(A _ 1,A _ 2,\ldots,A _ N)$ of length $N$.
Let $\lbrace s _ 1,s _ 2,\ldots,s _ k\rbrace\ (s _ 1\lt s _ 2\lt\cdots\lt s _ k)$ be the set of all non-negative integers that can be the $\operatorname{xor}$ of a not-necessarily-contiguous (possibly empty) subsequence of $A$.
Given integers $L$ and $R$, print $s _ L,s _ {L+1},\ldots,s _ R$ in this order.
- the $2^j$s place of $X$ is $1$ if and only if there is an odd number of elements among $a _ 1,\ldots,a _ n$ whose $2^j$s place is $1$.
You are given a sequence of non-negative integers $A=(A _ 1,A _ 2,\ldots,A _ N)$ of length $N$.
Let $\lbrace s _ 1,s _ 2,\ldots,s _ k\rbrace\ (s _ 1\lt s _ 2\lt\cdots\lt s _ k)$ be the set of all non-negative integers that can be the $\operatorname{xor}$ of a not-necessarily-contiguous (possibly empty) subsequence of $A$.
Given integers $L$ and $R$, print $s _ L,s _ {L+1},\ldots,s _ R$ in this order.
Input
The input is given from Standard Input in the following format:
```
$N$ $L$ $R$
$A _ 1$ $A _ 2$ $\ldots$ $A _ N$
```
```
$N$ $L$ $R$
$A _ 1$ $A _ 2$ $\ldots$ $A _ N$
```
Output
Print $s _ i\ (L\leq i\leq R)$ in ascending order of $i$, separated by spaces.
Constraints
- $1\leq N\leq2\times10^5$
- $0\leq A _ i\lt2^{60}\ (1\leq i\leq N)$
- $1\leq L\leq R\leq k$
- $R-L\leq2\times10^5$
- All values in the input are integers.
- $0\leq A _ i\lt2^{60}\ (1\leq i\leq N)$
- $1\leq L\leq R\leq k$
- $R-L\leq2\times10^5$
- All values in the input are integers.
Sample 1 Input
4 1 8
2 21 17 21
Sample 1 Output
0 2 4 6 17 19 21 23
There are 14 not-necessarily-contiguous subsequences of A: (),(2),(17),(21),(2,17),(2,21),(17,21),(21,17),(21,21),(2,17,21),(2,21,17),(2,21,21),(21,17,21), and (2,21,17,21), whose xorxors are as follows.
- The xorxor of () is 0.
- The xorxor of (2) is 2.
- The xorxor of (17) is 17.
- The xorxor of (21) is 21.
- The xorxor of (2,17) is 19.
- The xorxor of (2,21) is 23.
- The xorxor of (17,21) is 4.
- The xorxor of (21,17) is 4.
- The xorxor of (21,21) is 0.
- The xorxor of (2,17,21) is 6.
- The xorxor of (2,21,17) is 6.
- The xorxor of (2,21,21) is 2.
- The xorxor of (21,17,21) is 17.
- The xorxor of (2,21,17,21) is 19.
Sample 2 Input
4 3 7
2 21 17 21
Sample 2 Output
4 6 17 19 21
Sample 3 Input
5 1 1
0 0 0 0 0
Sample 3 Output
0
6 21 21
88 44 82 110 121 80
41
Sample 4 Input
12 26 48
19629557415 14220078328 11340722069 30701452525 22333517481 720413777 11883028647 20926361028 24376768297 720413777 27999065315 13558621130
Sample 4 Output
13558621130 14220078328 14586054825 15518998043 15970974282 16379590008 17091531049 17412316967 17836964726 18263536708 18965057557 19629557415 20282860278 20926361028 21302757781 21908867832 22333517481 22893781403 23595304394 23723463544 24376768297 24885524507 25261923402