9175: ABC283 —— F - Permutation Distance
[Creator : ]
Description
You are given a permutation $P=(P _ 1,P _ 2,\ldots,P _ N)$ of $(1,2,\ldots,N)$.
Find the following value for all $i\ (1\leq i\leq N)$:
- $D _ i=\displaystyle \min_{j\neq i} (\lvert P _ i-P_j \rvert+ \lvert i-j \rvert )$.
What is a permutation? A permutation of $(1,2,\ldots,N)$ is a sequence that is obtained by rearranging $(1,2,\ldots,N)$. In other words, a sequence $A$ of length $N$ is a permutation of $(1,2,\ldots,N)$ if and only if each $i\ (1\leq i\leq N)$ occurs in $A$ exactly once.
Find the following value for all $i\ (1\leq i\leq N)$:
- $D _ i=\displaystyle \min_{j\neq i} (\lvert P _ i-P_j \rvert+ \lvert i-j \rvert )$.
What is a permutation? A permutation of $(1,2,\ldots,N)$ is a sequence that is obtained by rearranging $(1,2,\ldots,N)$. In other words, a sequence $A$ of length $N$ is a permutation of $(1,2,\ldots,N)$ if and only if each $i\ (1\leq i\leq N)$ occurs in $A$ exactly once.
Input
The input is given from Standard Input in the following format:
```
$N$
$P _ 1$ $P _ 2$ $\ldots$ $P _ N$
```
```
$N$
$P _ 1$ $P _ 2$ $\ldots$ $P _ N$
```
Output
Print $D _ i\ (1\leq i\leq N)$ in ascending order of $i$, separated by spaces.
Constraints
- $2 \leq N \leq 2\times10^5$
- $1 \leq P _ i \leq N\ (1\leq i\leq N)$
- $i\neq j\implies P _ i\neq P _ j$
- All values in the input are integers.
- $1 \leq P _ i \leq N\ (1\leq i\leq N)$
- $i\neq j\implies P _ i\neq P _ j$
- All values in the input are integers.
Sample 1 Input
4
3 2 4 1
Sample 1 Output
2 2 3 3
For example, for i=1,
- if j=2, we have $∣P_i−P_j∣=1$ and ∣i−j∣=1;
- if j=3, we have $∣P_i−P_j∣=1$ and ∣i−j∣=2;
- if j=4, we have $∣P_i−P_j∣=2$ and ∣i−j∣=3.
Sample 2 Input
7
1 2 3 4 5 6 7
Sample 2 Output
2 2 2 2 2 2 2
Sample 3 Input
16
12 10 7 14 8 3 11 13 2 5 6 16 4 1 15 9
Sample 3 Output
3 3 3 5 3 4 3 3 4 2 2 4 4 4 4 7
HINT
相同题目:ABC283。