Problem9159--ABC281 —— F - Xor Minimization

9159: ABC281 —— F - Xor Minimization

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given a sequence of non-negative integers $A=(a_1,\ldots,a_N)$.

Let us perform the following operation on $A$ just once.

-   Choose a non-negative integer $x$. Then, for every $i=1, \ldots, N$, replace the value of $a_i$ with the bitwise XOR of $a_i$ and $x$.

Let $M$ be the maximum value in $A$ after the operation. Find the minimum possible value of $M$.

What is bitwise XOR? The bitwise XOR of non-negative integers $A$ and $B$, $A \oplus B$, is defined as follows.

-   When $A \oplus B$ is written in binary, the $k$\-th lowest bit ($k \geq 0$) is $1$ if exactly one of the $k$\-th lowest bits of $A$ and $B$ is $1$, and $0$ otherwise.

For instance, $3 \oplus 5 = 6$ (in binary: $011 \oplus 101 = 110$).

Input

The input is given from Standard Input in the following format:

```
$N$
$a_1$ $\ldots$ $a_N$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 1.5 \times 10^5$
-   $0 \leq a_i \lt 2^{30}$
-   All values in the input are integers.

Sample 1 Input

3
12 18 11

Sample 1 Output

16
If we do the operation with x=2, the sequence becomes (12⊕2,18⊕2,11⊕2)=(14,16,9), where the maximum value M is 16.
We cannot make M smaller than 16, so this value is the answer.

Sample 2 Input

10
0 0 0 0 0 0 0 0 0 0

Sample 2 Output

0

Sample 3 Input

5
324097321 555675086 304655177 991244276 9980291

Sample 3 Output

805306368

HINT

相同题目:ABC281

Source/Category