9158: ABC281 —— E - Least Elements
[Creator : ]
Description
You are given an integer sequence $A = (A_1, \dots, A_N)$ of length $N$, and integers $M$ and $K$.
For each $i = 1, \dots, N - M + 1$, solve the following independent problem.
Find the sum of the first $K$ values in the sorted list of the $M$ integers $A_i, A_{i + 1}, \dots, A_{i + M - 1}$ in ascending order.
For each $i = 1, \dots, N - M + 1$, solve the following independent problem.
Find the sum of the first $K$ values in the sorted list of the $M$ integers $A_i, A_{i + 1}, \dots, A_{i + M - 1}$ in ascending order.
Input
The input is given from Standard Input in the following format:
```
$N$ $M$ $K$
$A_1$ $A_2$ $\ldots$ $A_N$
```
```
$N$ $M$ $K$
$A_1$ $A_2$ $\ldots$ $A_N$
```
Output
Let $\mathrm{answer}_k$ be the answer to the problem for $i = k$, and print them in the following format:
```
$\mathrm{answer}_1$ $\mathrm{answer}_2$ $\ldots$ $\mathrm{answer}_{N-M+1}$
```
```
$\mathrm{answer}_1$ $\mathrm{answer}_2$ $\ldots$ $\mathrm{answer}_{N-M+1}$
```
Constraints
- $1 \leq K \leq M \leq N \leq 2 \times 10^5$
- $1 \leq A_i \leq 10^9$
- All values in the input are integers.
- $1 \leq A_i \leq 10^9$
- All values in the input are integers.
Sample 1 Input
6 4 3
3 1 4 1 5 9
Sample 1 Output
5 6 10
For i=1, sorting $A_i,A_{i+1},A_{i+2},A_{i+3}$ in ascending order yields 1,1,3,4, where the sum of the first three values is 5.
For i=2, sorting $A_i,A_{i+1},A_{i+2},A_{i+3}$ in ascending order yields 1,1,4,5, where the sum of the first three values is 6.
For i=3, sorting $A_i,A_{i+1},A_{i+2},A_{i+3}$ in ascending order yields 1,4,5,9, where the sum of the first three values is 10.
For i=2, sorting $A_i,A_{i+1},A_{i+2},A_{i+3}$ in ascending order yields 1,1,4,5, where the sum of the first three values is 6.
For i=3, sorting $A_i,A_{i+1},A_{i+2},A_{i+3}$ in ascending order yields 1,4,5,9, where the sum of the first three values is 10.
Sample 2 Input
10 6 3
12 2 17 11 19 8 4 3 6 20
Sample 2 Output
21 14 15 13 13