9153: ABC333 —— G - Nearest Fraction
[Creator : ]
Description
You are given a positive real number $r$ less than $1$, and a positive integer $N$.
Among the pair of integers $(p,q)$ such that $0\leq p\leq q\leq N$ and $\gcd(p,q)=1$, find the one that minimizes $\left\vert r-\dfrac pq\right\vert$.
If multiple such pairs $(p,q)$ exist, print the one with the smallest value of $\dfrac pq$.
Among the pair of integers $(p,q)$ such that $0\leq p\leq q\leq N$ and $\gcd(p,q)=1$, find the one that minimizes $\left\vert r-\dfrac pq\right\vert$.
If multiple such pairs $(p,q)$ exist, print the one with the smallest value of $\dfrac pq$.
Input
The input is given from Standard Input in the following format:
```
$r$
$N$
```
```
$r$
$N$
```
Output
For the pair $(p,q)$ that satisfies the conditions in the problem statement, print $p$ and $q$ in this order, separated by a space, in a single line.
Constraints
- $0\lt r\lt 1$
- $r$ is given as a real number with at most $18$ decimal places.
- $1\leq N\leq 10^{10}$
- $N$ is an integer.
- $r$ is given as a real number with at most $18$ decimal places.
- $1\leq N\leq 10^{10}$
- $N$ is an integer.
Sample 1 Input
0.333
33
Sample 1 Output
1 3
$∣0.333−\frac{1}{3}∣=\frac{1}{3000}$. There is no 0≤p≤q≤33,gcd(p,q)=1 such that $∣0.333−\frac{p}{q}∣<\frac{1}{3000}$, so print 1 3.
Sample 2 Input
0.45
5
Sample 2 Output
2 5
$∣0.45−\frac{1}{2}∣=∣0.45−\frac{2}{5}∣=\frac{1}{20}$. There is no 0≤p≤q≤5,gcd(p,q)=1 such that $∣0.45−\frac{p}{q}∣<\frac{1}{20}$, and we have $\frac{1}{2}>\frac{2}{5}$, so print 2 5.
Sample 3 Input
0.314159265358979323
10000
Sample 3 Output
71 226
$∣0.314159265358979323−\frac{71}{226}∣=\frac{3014435336501}{113000000000000000000}$.
0.007735339533561113
7203576162
34928144 4515398949
HINT
相同题目:ABC333。