9145: ABC332 —— F - Random Update Query
[Creator : ]
Description
You are given an integer sequence $A = (A_1, A_2, \ldots, A_N)$ of length $N$.
We will perform the following operation on $A$ for $i = 1, 2, \ldots, M$ in this order.
- First, choose an integer between $L_i$ and $R_i$, inclusive, uniformly at random and denote it as $p$.
- Then, change the value of $A_p$ to the integer $X_i$.
For the final sequence $A$ after the above procedure, print the expected value, modulo $998244353$, of $A_i$ for each $i = 1, 2, \ldots, N$.
How to print expected values modulo $998244353$
It can be proved that the expected values sought in this problem are always rational. Furthermore, the constraints of this problem guarantee that if each of those expected values is expressed as an irreducible fraction $\frac{y}{x}$, then $x$ is not divisible by $998244353$.
Now, there is a unique integer $z$ between $0$ and $998244352$, inclusive, such that $xz \equiv y \pmod{998244353}$. Report this $z$.
We will perform the following operation on $A$ for $i = 1, 2, \ldots, M$ in this order.
- First, choose an integer between $L_i$ and $R_i$, inclusive, uniformly at random and denote it as $p$.
- Then, change the value of $A_p$ to the integer $X_i$.
For the final sequence $A$ after the above procedure, print the expected value, modulo $998244353$, of $A_i$ for each $i = 1, 2, \ldots, N$.
How to print expected values modulo $998244353$
It can be proved that the expected values sought in this problem are always rational. Furthermore, the constraints of this problem guarantee that if each of those expected values is expressed as an irreducible fraction $\frac{y}{x}$, then $x$ is not divisible by $998244353$.
Now, there is a unique integer $z$ between $0$ and $998244352$, inclusive, such that $xz \equiv y \pmod{998244353}$. Report this $z$.
Input
The input is given from Standard Input in the following format:
```
$N$ $M$
$A_1$ $A_2$ $\ldots$ $A_N$
$L_1$ $R_1$ $X_1$
$L_2$ $R_2$ $X_2$
$\vdots$
$L_M$ $R_M$ $X_M$
```
```
$N$ $M$
$A_1$ $A_2$ $\ldots$ $A_N$
$L_1$ $R_1$ $X_1$
$L_2$ $R_2$ $X_2$
$\vdots$
$L_M$ $R_M$ $X_M$
```
Output
Print the expected values $E_i$ of the final $A_i$ for $i = 1, 2, \ldots, N$ in the format below, separated by spaces.
```
$E_1$ $E_2$ $\ldots$ $E_N$
```
```
$E_1$ $E_2$ $\ldots$ $E_N$
```
Constraints
- All input values are integers.
- $1 \leq N, M \leq 2 \times 10^5$
- $0 \leq A_i \leq 10^9$
- $1 \leq L_i \leq R_i \leq N$
- $0 \leq X_i \leq 10^9$
- $1 \leq N, M \leq 2 \times 10^5$
- $0 \leq A_i \leq 10^9$
- $1 \leq L_i \leq R_i \leq N$
- $0 \leq X_i \leq 10^9$
Sample 1 Input
5 2
3 1 4 1 5
1 2 2
2 4 0
Sample 1 Output
499122179 1 665496238 665496236 5
We start from the initial state A=(3,1,4,1,5) and perform the following two operations.
- The first operation chooses $A_1$ or $A_2$ uniformly at random, and changes its value to 2.
- Then, the second operation chooses one of $A_2,A_3,A_4$ uniformly at random, and changes its value to 0.
As a result, the expected values of the elements in the final A are $(E_1,E_2,E_3,E_4,E_5)=(\frac{2}{5},1,\frac{3}{8},\frac{3}{2},5)$.
Sample 2 Input
2 4
1 2
1 1 3
2 2 4
1 1 5
2 2 6
Sample 2 Output
5 6
Sample 3 Input
20 20
998769066 273215338 827984962 78974225 994243956 791478211 891861897 680427073 993663022 219733184 570206440 43712322 66791680 164318676 209536492 137458233 289158777 461179891 612373851 330908158
12 18 769877494
9 13 689822685
6 13 180913148
2 16 525285434
2 14 98115570
14 17 622616620
8 12 476462455
13 17 872412050
14 15 564176146
7 13 143650548
2 5 180435257
4 10 82903366
1 2 643996562
8 10 262860196
10 14 624081934
11 13 581257775
9 19 381806138
3 12 427930466
6 19 18249485
14 19 682428942
Sample 3 Output
821382814 987210378 819486592 142238362 447960587 678128197 687469071 405316549 318941070 457450677 426617745 712263899 939619994 228431878 307695685 196179692 241456697 12668393 685902422 330908158
HINT
相同题目:ABC332。