Problem9127--ABC330 —— B - Minimize Abs 1

9127: ABC330 —— B - Minimize Abs 1

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given an integer sequence $A=(A_1,A_2,\ldots,A_N)$ of length $N$ and integers $L$ and $R$ such that $L\leq R$.

For each $i=1,2,\ldots,N$, find the integer $X_i$ that satisfies both of the following conditions. Note that the integer to be found is always uniquely determined.

-   $L\leq X_i \leq R$.
-   For every integer $Y$ such that $L \leq Y \leq R$, it holds that $|X_i - A_i| \leq |Y - A_i|$.

Input

The input is given from Standard Input in the following format:

```
$N$ $L$ $R$
$A_1$ $\ldots$ $A_N$
```

Output

Print $X_i$ for $i=1,2,\ldots,N$, separated by spaces.

Constraints

-   $1\leq N\leq 2\times 10^5$
-   $1\leq L\leq R \leq 10^9$
-   $1\leq A_i\leq 10^9$
-   All input values are integers.

Sample 1 Input

5 4 7
3 1 4 9 7

Sample 1 Output

4 4 4 7 7
For i=1:
  • ∣4−3∣=1
  • ∣5−3∣=2
  • ∣6−3∣=3
  • ∣7−3∣=4
Thus, $X_i=4$.

Sample 2 Input

3 10 10
11 10 9

Sample 2 Output

10 10 10

HINT

相同题目:ABC330

Source/Category