9127: ABC330 —— B - Minimize Abs 1
[Creator : ]
Description
You are given an integer sequence $A=(A_1,A_2,\ldots,A_N)$ of length $N$ and integers $L$ and $R$ such that $L\leq R$.
For each $i=1,2,\ldots,N$, find the integer $X_i$ that satisfies both of the following conditions. Note that the integer to be found is always uniquely determined.
- $L\leq X_i \leq R$.
- For every integer $Y$ such that $L \leq Y \leq R$, it holds that $|X_i - A_i| \leq |Y - A_i|$.
For each $i=1,2,\ldots,N$, find the integer $X_i$ that satisfies both of the following conditions. Note that the integer to be found is always uniquely determined.
- $L\leq X_i \leq R$.
- For every integer $Y$ such that $L \leq Y \leq R$, it holds that $|X_i - A_i| \leq |Y - A_i|$.
Input
The input is given from Standard Input in the following format:
```
$N$ $L$ $R$
$A_1$ $\ldots$ $A_N$
```
```
$N$ $L$ $R$
$A_1$ $\ldots$ $A_N$
```
Output
Print $X_i$ for $i=1,2,\ldots,N$, separated by spaces.
Constraints
- $1\leq N\leq 2\times 10^5$
- $1\leq L\leq R \leq 10^9$
- $1\leq A_i\leq 10^9$
- All input values are integers.
- $1\leq L\leq R \leq 10^9$
- $1\leq A_i\leq 10^9$
- All input values are integers.
Sample 1 Input
5 4 7
3 1 4 9 7
Sample 1 Output
4 4 4 7 7
For i=1:
- ∣4−3∣=1
- ∣5−3∣=2
- ∣6−3∣=3
- ∣7−3∣=4
Sample 2 Input
3 10 10
11 10 9
Sample 2 Output
10 10 10