Problem9119--ABC336 —— B - CTZ

9119: ABC336 —— B - CTZ

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

For a positive integer $X$, let $\text{ctz}(X)$ be the (maximal) number of consecutive zeros at the end of the binary notation of $X$.  
If the binary notation of $X$ ends with a $1$, then $\text{ctz}(X)=0$.

You are given a positive integer $N$. Print $\text{ctz}(N)$.

Input

The input is given from Standard Input in the following format:

```
$N$
```

Output

Print $\text{ctz}(N)$.

Constraints

-   $1\leq N\leq 10^9$
-   $N$ is an integer.

Sample 1 Input

2024

Sample 1 Output

3
2024 is 11111101000 in binary, with three consecutive 0s from the end, so ctz(2024)=3.
Thus, print 3.

Sample 2 Input

18

Sample 2 Output

1
18 is 10010 in binary, so ctz(18)=1.
Note that we count the trailing zeros.

Sample 3 Input

5

Sample 3 Output

0

HINT

相同题目:ABC336

Source/Category