9117: ABC335 —— G - Discrete Logarithm Problems
[Creator : ]
Description
You are given $N$ integers $A_1,\ldots,A_N$ and a prime number $P$. Find the number of pairs of integers $(i,j)$ that satisfy both of the following conditions:
- $1 \leq i,j \leq N$;
- There is a positive integer $k$ such that $A_i^k \equiv A_j \mod P$.
- $1 \leq i,j \leq N$;
- There is a positive integer $k$ such that $A_i^k \equiv A_j \mod P$.
Input
The input is given from Standard Input in the following format:
```
$N$ $P$
$A_1$ $\ldots$ $A_N$
```
```
$N$ $P$
$A_1$ $\ldots$ $A_N$
```
Output
Print the answer.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $1 \leq A_i < P$
- $2 \leq P \leq 10^{13}$
- $P$ is prime.
- All input values are integers.
- $1 \leq A_i < P$
- $2 \leq P \leq 10^{13}$
- $P$ is prime.
- All input values are integers.
Sample 1 Input
3 13
2 3 5
Sample 1 Output
5
Five pairs satisfy the conditions: (1,1),(1,2),(1,3),(2,2),(3,3).
For example, for the pair (1,3), if we take k=9, then $A_1^9=512≡5=A_3 \bmod {13}$.
For example, for the pair (1,3), if we take k=9, then $A_1^9=512≡5=A_3 \bmod {13}$.
Sample 2 Input
5 2
1 1 1 1 1
Sample 2 Output
25
Sample 3 Input
10 9999999999971
141592653589 793238462643 383279502884 197169399375 105820974944 592307816406 286208998628 34825342117 67982148086 513282306647
Sample 3 Output
63
HINT
相同题目:ABC335。