Problem9117--ABC335 —— G - Discrete Logarithm Problems

9117: ABC335 —— G - Discrete Logarithm Problems

[Creator : ]
Time Limit : 5.000 sec  Memory Limit : 512 MiB

Description

You are given $N$ integers $A_1,\ldots,A_N$ and a prime number $P$. Find the number of pairs of integers $(i,j)$ that satisfy both of the following conditions:

-   $1 \leq i,j \leq N$;
-   There is a positive integer $k$ such that $A_i^k \equiv A_j \mod P$.

Input

The input is given from Standard Input in the following format:

```
$N$ $P$
$A_1$ $\ldots$ $A_N$
```

Output

Print the answer.

Constraints

-   $2 \leq N \leq 2 \times 10^5$
-   $1 \leq A_i < P$
-   $2 \leq P \leq 10^{13}$
-   $P$ is prime.
-   All input values are integers.

Sample 1 Input

3 13
2 3 5

Sample 1 Output

5
Five pairs satisfy the conditions: (1,1),(1,2),(1,3),(2,2),(3,3).
For example, for the pair (1,3), if we take k=9, then $A_1^9=512≡5=A_3 \bmod {13}$.

Sample 2 Input

5 2
1 1 1 1 1

Sample 2 Output

25

Sample 3 Input

10 9999999999971
141592653589 793238462643 383279502884 197169399375 105820974944 592307816406 286208998628 34825342117 67982148086 513282306647

Sample 3 Output

63

HINT

相同题目:ABC335

Source/Category