Problem9116--ABC335 —— F - Hop Sugoroku

9116: ABC335 —— F - Hop Sugoroku

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

There is a row of $N$ squares labeled $1,2,\dots,N$ and a sequence $A=(A_1,A_2,\dots,A_N)$ of length $N$.  
Initially, square $1$ is painted black, the other $N-1$ squares are painted white, and a piece is placed on square $1$.

You may repeat the following operation any number of times, possibly zero:

-   When the piece is on square $i$, choose a positive integer $x$ and move the piece to square $i + A_i \times x$.
    -   Here, you cannot make a move with $i + A_i \times x < N$.
-   Then, paint the square $i + A_i \times x$ black.

Find the number of possible sets of squares that can be painted black at the end of the operations, modulo $998244353$.

Input

The input is given from Standard Input in the following format:

```
$N$
$A_1$ $A_2$ $\dots$ $A_N$
```

Output

Print the answer as an integer.

Constraints

-   All input values are integers.
-   $1 \le N \le 2 \times 10^5$
-   $1 \le A_i \le 2 \times 10^5$

Sample 1 Input

5
1 2 3 1 1

Sample 1 Output

8
There are eight possible sets of squares painted black:
  • Square 1
  • Squares 1,2
  • Squares 1,2,4
  • Squares 1,2,4,5
  • Squares 1,3
  • Squares 1,4
  • Squares 1,4,5
  • Squares 1,5

Sample 2 Input

1
200000

Sample 2 Output

1

Sample 3 Input

40
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sample 3 Output

721419738

HINT

相同题目:ABC335

Source/Category