Problem9090--CodeChef KSIZEGCD - Maximum of GCDs

9090: CodeChef KSIZEGCD - Maximum of GCDs

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given an array $A$ of $N$ positive integers.
The power of a subarray $A[L,R]\ (1≤L≤R≤N)$ having size (R−L+1) is defined as gcd($A_L,A_{(L+1)},…,A_R$), where gcd⁡gcd denotes the greatest common divisor.
Your task is to find the maximum power of a subarray of size $k$, for all $1≤k≤N$.
A subarray is formed by deleting some (possibly zero) elements from the beginning of the array and some (possibly zero) elements from the end of the array.

Input

The first line contains a single integer $T$: the number of test cases.
The first line of each test case contains a positive integer $N$: the size of array $A$.
The second line of each test case contains $N$ positive integers: $A_1,A_2,A_3,…,A_N$.

Output

For each test case, output $N$ space-separated positive integers.
The $i^{th}$ integer should be the maximum power among all subarrays of $A$ with size $i$.

Constraints

$1≤T≤10^4$
$1≤N≤10^5$
$1≤A_i≤10^9$
The sum of $N$ over all test cases won't exceed $2⋅10^5$.

Sample 1 Input

5
4
5 5 5 5
4
4 2 3 1
3
6 10 15
5
2 6 3 9 24
5
3 11 7 2 5

Sample 1 Output

5 5 5 5
4 2 1 1
15 5 1
24 3 3 3 1
11 1 1 1 1
Test case 1:
  • Subarray of size 1 having maximum power is [$A_2$]. Thus, gcd($A_2$)=5.
  • Subarray of size 2 having maximum power is [$A_3,A_4$]. Thus, gcd($A_3,A_4$)=5.
  • Subarray of size 3 having maximum power is [$A_1,A_2,A_3$]. Thus, gcd($A_1,A_2,A_3$)=5.
  • Subarray of size 4 having maximum power is [$A_1,A_2,A_3,A_4$]. Thus, gcd($A_1,A_2,A_3,A_4$)=5.
Note that there can be multiple subarrays with the same power.

HINT

相同题目:CodeChef KSIZEGCD

Source/Category