Problem9039--[yosupo] Polynomial - Exp of Formal Power Series

9039: [yosupo] Polynomial - Exp of Formal Power Series

[Creator : ]
Time Limit : 2.000 sec  Memory Limit : 512 MiB

Description

You are given a formal power series $f(x) = \sum_{i=0}^{N-1} a_i x^i \in \mathbb{Q}[[x]]$ with $a_0 = 0$.
Calculate the first $N$ terms of $\exp(f(x)) = \sum_{i=0}^{\infty} b_i x^i$.
In other words, find $g(x) = \sum_{i=0}^{N-1} b_i x^i \in \mathbb{Q}[[x]]$ such that

$g(x) \equiv \sum_{k=0}^{N-1} \frac{f(x)^k}{k!} \pmod{x^N}.$

Print the coefficients modulo $998244353$.

Input

$N$
$a_0$ $a_1$ $\cdots$ $a_{N - 1}$

Output

$b_0$ $b_1$ $\cdots$ $b_{N - 1}$

Constraints

- $1 \leq N \leq 5\times 10^5$
- $0 \leq a_i < 998244353$
- $a_0 = 0$

Sample 1 Input

5
0 1 2 3 4

Sample 1 Output

1 1 499122179 166374064 291154613

HINT

相同题目:yosupo

Source/Category