Problem7991--ABC255 —— D - ±1 Operation 2

7991: ABC255 —— D - ±1 Operation 2

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

You are given a sequence of length $N:\ A=(A_1,A_2,…,A_N)$. The following action on this sequence is called an operation.
  • First, choose an integer i such that 1≤i≤N.
  • Next, choose and do one of the following.
    • Add 1 to $A_i$.
    • Subtract 1 from $A_i$.
Answer Q questions.
The i-th question is the following.
  • Consider performing zero or more operations to change every element of A to $X_i$. Find the minimum number of operations required to do so.

Input

Input is given from Standard Input in the following format:
$N\ Q$
$A_1\ A_2\ …\ A_N$
$X_1\ X_2$
$⋮$
$X_Q$

Output

Print Q lines.
The i-th line should contain the answer to the i-th question as an integer.

Constraints

All values in input are integers.
$1≤N,Q≤2×10^5$
$0≤A_i≤10^9$
$0≤X_i≤10^9$

Sample 1 Input

5 3
6 11 2 5 5
5
20
0

Sample 1 Output

10
71
29
We have A=(6,11,2,5,5) and three questions in this input.
For the 1-st question, you can change every element of A to 5 in 10 operations as follows.
  • Subtract 1 from $A_1$.
  • Subtract 1 from $A_2$ six times.
  • Add 1 to $A_3$ three times.
It is impossible to change every element of A to 5 in 9 or fewer operations.
For the 2-nd question, you can change every element of A to 20 in 71 operations.
For the 3-rd question, you can change every element of A to 0 in 29 operations.

Sample 2 Input

10 5
1000000000 314159265 271828182 141421356 161803398 0 777777777 255255255 536870912 998244353
555555555
321654987
1000000000
789456123
0

Sample 2 Output

3316905982
2811735560
5542639502
4275864946
4457360498

Source/Category