Problem7672--[CSES Problem Set] Graph Paths I

7672: [CSES Problem Set] Graph Paths I

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

Consider a directed graph that has $n$ nodes and $m$ edges. 
Your task is to count the number of paths from node $1$ to node $n$ with exactly $k$ edges.

Input

The first input line contains three integers $n, m, k$: the number of nodes and edges, and the length of the path. The nodes are numbered $1,2,\dots,n$.
Then, there are $m$ lines describing the edges. Each line contains two integers $a$ and $b$: there is an edge from node $a$ to node $b$.

Output

Print the number of paths modulo $10^9+7$.

Constraints

$1≤n≤100$
$1 \le m \le n(n-1)$
$1 \le k \le 10^9$
$1 \le a,b \le n$

Sample 1 Input

3 4 8
1 2
2 3
3 1
3 2

Sample 1 Output

2
The paths are $1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3$ and $1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3$.

HINT

相同题目:CSES 1723

Source/Category