Problem7392--ABC276 —— G - Count Sequences

7392: ABC276 —— G - Count Sequences

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

Find the number of sequences of integers with N terms, $A=(a_1,a_2,\ldots,a_N)$, that satisfy the following conditions, modulo 998244353.
  • $0 \leq a_1 \leq a_2 \leq \ldots \leq a_N \leq M$.
  • For each $i=1,2,\ldots,N-1$, the remainder when $a_i$ is divided by 3 is different from the remainder when $a_{i+1}$ is divided by 3.

Input

The input is given from Standard Input in the following format:
$N\ M$

Output

Print the answer.

Constraints

$2≤N≤10^7$
$1 \leq M \leq 10^7$
All values in the input are integers.

Sample 1 Input

3 4

Sample 1 Output

8

Here are the eight sequences that satisfy the conditions.

  • (0,1,2)
  • (0,1,3)
  • (0,2,3)
  • (0,2,4)
  • (1,2,3)
  • (1,2,4)
  • (1,3,4)
  • (2,3,4)

Sample 2 Input

276 10000000

Sample 2 Output

909213205

Source/Category