Problem7359--ABC275 —— Ex - Monster

7359: ABC275 —— Ex - Monster

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

There are N monsters along a number line. At the coordinate $i\ (1\leq i\leq N)$ is a monster with a stamina of $A_i$.
Additionally, at the coordinate i, there is a permanent shield of a strength $B_i$.
This shield persists even when the monster at the same coordinate has a health of 0 or below.
Takahashi, a magician, can perform the following operation any number of times.
  • Choose integers l and rr satisfying $1\leq l\leq r\leq N$.
  • Then, consume $\max(B_l, B_{l+1}, \ldots, B_r)$ MP (magic points) to decrease by 1 the stamina of each of the monsters at the coordinates $l,l+1,\ldots,r$.
When choosing l and r, it is fine if some of the monsters at the coordinates $l,l+1,\ldots,r$ already have a stamina of 0 or below.
Note, however, that the shields at all those coordinates still exist.
Takahashi wants to make the stamina of every monster 0 or below.
Find the minimum total MP needed to achieve his objective.

Input

The input is given from Standard Input in the following format:
$N$
$A_1\ A_2\ \ldots\ A_N$
$B_1\ B_2\ \ldots\ B_N$

Output

Print the minimum total MP needed to achieve his objective.

Constraints

$1≤N≤10^5$
$1 \leq A_i,B_i \leq 10^9$
All values in the input are integers.

Sample 1 Input

5
4 3 5 1 2
10 40 20 60 50

Sample 1 Output

210

Takahashi can achieve his objective as follows.

  • Choose (l,r)=(1,5). Consume $\max(10,40,20,60,50)=60$ MP, and the staminas of the monsters are (3,2,4,0,1).
  • Choose (l,r)=(1,5). Consume $\max(10,40,20,60,50)=60$ MP, and the staminas of the monsters are (2,1,3,-1,0).
  • Choose (l,r)=(1,3). Consume $\max(10,40,20)=40$ MP, and the staminas of the monsters are (1,0,2,-1,0)
  • Choose (l,r)=(1,1). Consume $\max(10)=10$ MP, and the staminas of the monsters are (0,0,2,-1,0).
  • Choose (l,r)=(3,3). Consume $\max(20)=20$ MP, and the staminas of the monsters are (0,0,1,-1,0).
  • Choose (l,r)=(3,3). Consume $\max(20)=20$ MP, and the staminas of the monsters are (0,0,0,-1,0).

Here, he consumes a total of 60+60+40+10+20+20=210 MP, which is the minimum possible.

Sample 2 Input

1
1000000000
1000000000

Sample 2 Output

1000000000000000000

Sample 3 Input

10
522 4575 6426 9445 8772 81 3447 629 3497 7202
7775 4325 3982 4784 8417 2156 1932 5902 5728 8537

Sample 3 Output

77917796

Source/Category