Problem7341--ABC235 —— F - Variety of Digits

7341: ABC235 —— F - Variety of Digits

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

Given are M digits $C_i$.
Find the sum, modulo 998244353, of all integers between 1 and N (inclusive) that contain all of $C_1, \ldots, C_M$ when written in base 10 without unnecessary leading zeros.

Input

Input is given from Standard Input in the following format:
$N$
$M$
$C_1\ \ldots\ C_M$

Output

Print the answer.

Constraints

$1≤N<10^{10^4}$
$1 \leq M \leq 10$
$0 \leq C_1 < \ldots < C_M \leq 9$
All values in input are integers.

Sample 1 Input

104
2
0 1

Sample 1 Output

520
Between 1 and 104, there are six integers that contain both 0 and 1 when written in base 10: 10,100,101,102,103,104.
The sum of them is 520.

Sample 2 Input

999
4
1 2 3 4

Sample 2 Output

0
Between 1 and 999, no integer contains all of 1, 2, 3, 4.

Sample 3 Input

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
5
0 2 4 6 8

Sample 3 Output

397365274

Source/Category