Problem7340--ABC235 —— E - MST + 1

7340: ABC235 —— E - MST + 1

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

Given is a weighted undirected connected graph G with N vertices and M edges, which may contain self-loops and multi-edges.
The vertices are labeled as Vertex 1, Vertex 2, …, Vertex N.
The edges are labeled as Edge 1, Edge 2, …, Edge M. Edge i connects Vertex $a_i$ and Vertex $b_i$ and has a weight of $c_i$. Here, for every pair of integers (i, j) such that 1≤i<j≤M, $c_i \neq c_j$ holds.
Process the Q queries explained below.
The i-th query gives a triple of integers $(u_i, v_i, w_i)$. Here, for every integer j such that $1 \leq j \leq M, w_i \neq c_j$ holds.
Let $e_i$ be an undirected edge that connects Vertex $u_i$ and Vertex $v_i$ and has a weight of $w_i$. Consider the graph $G_i$ obtained by adding $e_i$ to G. It can be proved that the minimum spanning tree $T_i$ of $G_i$ is uniquely determined. Does $T_i$ contain $e_i$? Print the answer as Yes or No.
Note that the queries do not change T. In other words, even though Query i considers the graph obtained by adding $e_i$ to G, the G in other queries does not have $e_i$.


What is minimum spanning tree?
The spanning tree of G is a tree with all of the vertices in G and some of the edges in G.
The minimum spanning tree of G is the tree with the minimum total weight of edges among the spanning trees of G.

Input

Input is given from Standard Input in the following format:
$N\ M\ Q$
$a_1\ b_1\ c_1$
$a_2\ b_2\ c_2$
$\vdots$
$a_M\ b_M\ c_M$
$u_1\ v_1\ w_1$
$u_2\ v_2\ w_2$
$\vdots$
$u_Q\ v_Q\ w_Q$

Output

Print Q lines. The i-th line should contain the answer to Query i: Yes or No.

Constraints

$2≤N≤2×10^5$
$N - 1 \leq M \leq 2 \times 10^5$
$1 \leq a_i \leq N\ (1 \leq i \leq M)$
$1 \leq b_i \leq N\ (1 \leq i \leq M)$
$1 \leq c_i \leq 10^9\ (1 \leq i \leq M)$
$c_i \neq c_j\ (1 \leq i \lt j \leq M)$
The graph G is connected.
$1 \leq Q \leq 2 \times 10^5$
$1 \leq u_i \leq N\ (1 \leq i \leq Q)$
$1 \leq v_i \leq N\ (1 \leq i \leq Q)$
$1 \leq w_i \leq 10^9\ (1 \leq i \leq Q)$
$w_i \neq c_j\ (1 \leq i \leq Q, 1 \leq j \leq M)$
All values in input are integers.

Sample 1 Input

5 6 3
1 2 2
2 3 3
1 3 6
2 4 5
4 5 9
3 5 8
1 3 1
3 4 7
3 5 7

Sample 1 Output

Yes
No
Yes
Below, let (u,v,w) denote an undirected edge that connects Vertex u and Vertex v and has the weight of w. Here is an illustration of G:

For example, Query 1 considers the graph $G_1$ obtained by adding $e_1 = (1,3,1)$ to G. The minimum spanning tree $T_1$ of $G_1$ has the edge set $\lbrace (1,2,2),(1,3,1),(2,4,5),(3,5,8) \rbrace$, which contains $e_1$, so Yes should be printed.

Sample 2 Input

2 3 2
1 2 100
1 2 1000000000
1 1 1
1 2 2
1 1 5

Sample 2 Output

Yes
No

Source/Category