Problem7334--ABC237 —— G - Range Sort Query

7334: ABC237 —— G - Range Sort Query

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

Given is a permutation $P=(P_1,P_2,\ldots,P_N)$ of $1,2,\ldots,N$, and an integer X.
Additionally, Q queries are given. The i-th query is represented as a triple of numbers $(C_i,L_i,R_i)$. Each query does the following operation on the permutation P.
  • If $C_i=1$: sort $P_{L_i},P_{L_i+1},\ldots,P_{R_i}$ in ascending order.
  • If $C_i=2$: sort $P_{L_i},P_{L_i+1},\ldots,P_{R_i}$ in descending order.
In the final permutation Pafter executing all queries in the given order, find i such that $P_i=X$.

Input

Input is given from Standard Input in the following format:
$N\ Q\ X$
$P_1\ P_2\ \ldots\ P_N$
$C_1\ L_1\ R_1$
$C_2\ L_2\ R_2$
$\vdots$
$C_Q\ L_Q\ R_Q$

Output

Print the answer.

Constraints

$1≤N≤2×10^5$
$1 \leq Q \leq 2\times 10^5$
$1 \leq X \leq N$
$(P_1,P_2,\ldots,P_N)$ is a permutation of $(1,2,\ldots,N)$.
$1 \leq C_i \leq 2$
$1 \leq L_i \leq R_i \leq N$
All values in input are integers.

Sample 1 Input

5 2 1
1 4 5 2 3
1 3 5
2 1 3

Sample 1 Output

3
Initially, the permutation is P=[1,4,5,2,3]. The queries change it as follows.
  • 1-st query sorts the 3-rd through 5-th elements in ascending order, making P=[1,4,2,3,5].
  • 2-nd query sorts the 1-st through 3-rd elements in descending order, making P=[4,2,1,3,5].
In the final permutation, we have $P_3=1$, so 3 should be printed.

Sample 2 Input

7 3 3
7 5 3 1 2 4 6
1 1 7
2 3 6
2 5 7

Sample 2 Output

7
The final permutation is P=[1,2,6,5,7,4,3].

Source/Category