Problem7330--ABC237 —— C - kasaka

7330: ABC237 —— C - kasaka

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

Given is a string S consisting of lowercase English letters. Determine whether adding some number of a's (possibly zero) at the beginning of S can make it a palindrome.
Here, a string of length $N, A=A_1A_2\ldots A_N$, is said to be a palindrome when $A_i=A_{N+1-i}$ for every $1\leq i\leq N$.

Input

Input is given from Standard Input in the following format:
$S$

Output

If adding some number of a's (possibly zero) at the beginning of S can make it a palindrome, print Yes; otherwise, print No.

Constraints

$1≤∣S∣≤10^6$
S consists of lowercase English letters.

Sample 1 Input

kasaka

Sample 1 Output

Yes
By adding one a at the beginning of kasaka, we have akasaka, which is a palindrome, so Yes should be printed.

Sample 2 Input

atcoder

Sample 2 Output

No
Adding any number of a's at the beginning of atcoder does not make it a palindrome.

Sample 3 Input

php

Sample 3 Output

Yes
php itself is a palindrome. Adding zero a's at the beginning of S is allowed, so Yes should be printed.

Source/Category