Problem7266--ABC274 —— B - Line Sensor

7266: ABC274 —— B - Line Sensor

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

There is a grid with H rows from top to bottom and W columns from left to right. Let (i, j) denote the square at the i-th row from the top and j-th column from the left.
The squares are described by characters $C_{i,j}$. If $C_{i,j}$ is ., (i, j) is empty; if it is #, (i, j) contains a box.
For integers jj satisfying 1≤j≤W, let the integer $X_j$ defined as follows.
  • $X_j$ is the number of boxes in the j-th column. In other words, $X_j$ is the number of integers i such that $C_{i,j}$ is #.
Find all of $X_1, X_2, \dots, X_W$.

Input

The input is given from Standard Input in the following format:
$H\ W$
$C_{1,1}C_{1,2}\dots C_{1,W}$
$C_{2,1}C_{2,2}\dots C_{2,W}$
$\vdots$
$C_{H,1}C_{H,2}\dots C_{H,W}$

Output

Print $X_1, X_2, \dots, X_W$ in the following format:
$X_1\ X_2\ \dots\ X_W$

Constraints

1≤H≤1000
1≤W≤1000
H and W are integers.
$C_{i, j}$ is . or #.

Sample 1 Input

3 4
#..#
.#.#
.#.#

Sample 1 Output

1 2 0 3
In the 1-st column, one square, (1, 1), contains a box. Thus, $X_1 = 1$.
In the 2-nd column, two squares, (2, 2) and (3, 2), contain a box. Thus, $X_2 = 2$.
In the 3-rd column, no squares contain a box. Thus, $X_3 = 0$.
In the 4-th column, three squares, (1, 4), (2, 4), and (3, 4), contain a box. Thus, $X_4 = 3$.
Therefore, the answer is $(X_1, X_2, X_3, X_4) = (1, 2, 0, 3)$.

Sample 2 Input

3 7
.......
.......
.......

Sample 2 Output

0 0 0 0 0 0 0
There may be no square that contains a box.

Sample 3 Input

8 3
.#.
###
.#.
.#.
.##
..#
##.
.##

Sample 3 Output

2 7 4

5 47
.#..#..#####..#...#..#####..#...#...###...#####
.#.#...#.......#.#...#......##..#..#...#..#....
.##....#####....#....#####..#.#.#..#......#####
.#.#...#........#....#......#..##..#...#..#....
.#..#..#####....#....#####..#...#...###...#####

0 5 1 2 2 0 0 5 3 3 3 3 0 0 1 1 3 1 1 0 0 5 3 3 3 3 0 0 5 1 1 1 5 0 0 3 2 2 2 2 0 0 5 3 3 3 3

Source/Category