Problem7176--ABC272 —— G - Yet Another mod M

7176: ABC272 —— G - Yet Another mod M

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

You are given a sequence $A=(A_1,A_2,\dots,A_N)$ of length N consisting of positive integers, where the elements of A are distinct.
You will choose a positive integer M between 3 and $10^9$ (inclusive) to perform the following operation once:
  • For each integer i such that $1 \le i \le N$, replace $A_i$ with $A_i \bmod M$.
Can you choose an M so that A satisfies the following condition after the operation? If you can, find such an M.
  • There exists an integer x such that x is the majority in A.
Here, an integer x is said to be the majority in A if the number of integers i such that $A_i = x$ is greater than the number of integers ii such that $A_i \neq x$.

Input

The input is given from Standard Input in the following format:
$N$
$A_1\ A_2\ \dots\ A_N$

Output

If there exists an M that satisfies the condition, print such an M. Otherwise, print -1.

Constraints

$3≤N≤5000$
$1 \le A_i \le 10^9$
The elements of A are distinct.
All values in the input are integers.

Sample 1 Input

5
3 17 8 14 10

Sample 1 Output

7
If you let M=7 to perform the operation, you will have A=(3,3,1,0,3), where 3 is the majority in A, so M=7 satisfies the condition.

Sample 2 Input

10
822848257 553915718 220834133 692082894 567771297 176423255 25919724 849988238 85134228 235637759

Sample 2 Output

37

Sample 3 Input

10
1 2 3 4 5 6 7 8 9 10

Sample 3 Output

-1

Source/Category