Problem7173--ABC272 —— D - Root M Leaper

7173: ABC272 —— D - Root M Leaper

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

There is a grid with $N \times N$ squares. We denote by (i, j) the square at the i-th row from the top and j-th column from the left.
Initially, a piece is placed on (1, 1). You may repeat the following operation any number of times:
  • Let (i, j) be the square the piece is currently on. Move the piece to the square whose distance from (i, j) is exactly $\sqrt{M}$.
Here, we define the distance between square (i, j) and square (k, l) as $\sqrt{(i-k)^2+(j-l)^2}$.
For all squares (i, j), determine if the piece can reach (i, j). If it can, find the minimum number of operations required to do so.

Input

The input is given from Standard Input in the following format:
$N\ M$

Output

Print $N$ lines. The i-th line should contain N integers. If the piece can reach (i, j), the j-th integer in the i-th line should be the minimum number of operations required to do so; otherwise, it should be -1−1.

Constraints

$1≤N≤400$
$1 \le M \le 10^6$
All values in the input are integers.

Sample 1 Input

3 1

Sample 1 Output

0 1 2
1 2 3
2 3 4

You can move the piece to four adjacent squares.

For example, we can move the piece to (2,2) with two operations as follows.

  • The piece is now on (1,1). The distance between (1,1) and (1,2) is exactly $\sqrt{1}$, so move the piece to (1,2).
  • The piece is now on (1,2). The distance between (1,2) and (2,2) is exactly $\sqrt{1}$, so move the piece to (2,2).

Sample 2 Input

10 5

Sample 2 Output

0 3 2 3 2 3 4 5 4 5
3 4 1 2 3 4 3 4 5 6
2 1 4 3 2 3 4 5 4 5
3 2 3 2 3 4 3 4 5 6
2 3 2 3 4 3 4 5 4 5
3 4 3 4 3 4 5 4 5 6
4 3 4 3 4 5 4 5 6 5
5 4 5 4 5 4 5 6 5 6
4 5 4 5 4 5 6 5 6 7
5 6 5 6 5 6 5 6 7 6

Source/Category