7005: ABC269 —— B - Rectangle Detection
[Creator : ]
Description
Takahashi generated $10$ strings $S_1,S_2,\dots,S_{10}$ as follows.
It can be proved that such integers $A, B, C$, and $D$ uniquely exist (there is just one answer) under the Constraints.
- First, let $S_i\ (1 \le i \le 10)$= .......... ($10$ .s in a row).
-
Next, choose four integers $A, B, C$, and $D$ satisfying all of the following.
- $1 \le A \le B \le 10$.
- $1 \le C \le D \le 10$.
-
Then, for every pair of integers $(i,j)$ satisfying all of the following, replace the $j$-th character of $S_i$ with #.
- $A \le i \le B$.
- $C \le j \le D$.
It can be proved that such integers $A, B, C$, and $D$ uniquely exist (there is just one answer) under the Constraints.
Input
The input is given from Standard Input in the following format:
$S_1$
$S_2$
$\vdots$
$S_{10}$
$S_1$
$S_2$
$\vdots$
$S_{10}$
Output
Print the answer in the following format:
$A\ B$
$C\ D$
$A\ B$
$C\ D$
Constraints
$S_1,S_2,\dots,S_{10}$ are strings, each of length $10$, that can be generated according to the Problem Statement.
Sample 1 Input
..........
..........
..........
..........
...######.
...######.
...######.
...######.
..........
..........
Sample 1 Output
5 8
4 9
Here, Takahashi chose $A=5, B=8, C=4, D=9$.
This choice generates $10$ strings $S_1,S_2,\dots,S_{10}$, each of length $10$, where the $4$-th through $9$-th characters of $S_5,S_6,S_7,S_8$ are #, and the other characters are ..
These are equal to the strings given in the input.
Sample 2 Input
..........
..#.......
..........
..........
..........
..........
..........
..........
..........
..........
Sample 2 Output
2 2
3 3
Sample 3 Input
##########
##########
##########
##########
##########
##########
##########
##########
##########
##########
Sample 3 Output
1 10
1 10