Problem6834--ABC168 —— E - ∙ (Bullet)

6834: ABC168 —— E - ∙ (Bullet)

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

We have caught $N$ sardines. The deliciousness and fragrantness of the $i$-th sardine is $A_i$ and $B_i$, respectively.
We will choose one or more of these sardines and put them into a cooler. However, two sardines on bad terms cannot be chosen at the same time.
The $i$-th and $j$-th sardines ($i \neq j$) are on bad terms if and only if $A_i \cdot A_j + B_i \cdot B_j = 0$.
In how many ways can we choose the set of sardines to put into the cooler? Since the count can be enormous, print it modulo $1000000007$.

Input

Input is given from Standard Input in the following format:
$N$
$A_1\ B_1$
$\vdots$
$A_N\ B_N$

Output

Print the count modulo $1000000007$.

Constraints

All values in input are integers.
$1 \leq N \leq 2 \times 10^5$
$-10^{18} \leq A_i, B_i \leq 10^{18}$

Sample 1 Input

3
1 2
-1 1
2 -1

Sample 1 Output

5

There are five ways to choose the set of sardines, as follows:

  • The $1$-st
  • The $1$-st and $2$-nd
  • The $2$-nd
  • The $2$-nd and $3$-rd
  • The $3$-rd

Sample 2 Input

10
3 2
3 2
-1 1
2 -1
-3 -9
-8 12
7 7
8 1
8 2
8 4

Sample 2 Output

479

Source/Category

  AtCoder_ABC 100.168.ABC168