Problem6508--ABC234 —— A - Weird Function

6508: ABC234 —— A - Weird Function

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

Let us define a function $f$ as $f(x) = x^2 + 2x + 3$.
Given an integer $t$, find $f(f(f(t)+t)+f(f(t)))$.
Here, it is guaranteed that the answer is an integer not greater than $2 \times 10^9$.

Input

Input is given from Standard Input in the following format:
$t$

Output

Print the answer as an integer.

Constraints

$t$ is an integer between $0$ and $10$ (inclusive).

Sample 1 Input

0

Sample 1 Output

1371

The answer is computed as follows.

  • $f(t) = t^2 + 2t + 3 = 0 \times 0 + 2 \times 0 + 3 = 3$
  • $f(t)+t = 3 + 0 = 3$
  • $f(f(t)+t) = f(3) = 3 \times 3 + 2 \times 3 + 3 = 18$
  • $f(f(t)) = f(3) = 18$
  • $f(f(f(t)+t)+f(f(t))) = f(18+18) = f(36) = 36 \times 36 + 2 \times 36 + 3 = 1371$

Sample 2 Input

3

Sample 2 Output

722502

Sample 3 Input

10

Sample 3 Output

1111355571

HINT

题目来源:AtCoder ABC234 A题

Source/Category