Problem6318--ABC231 —— H - Minimum Coloring

6318: ABC231 —— H - Minimum Coloring

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

We have a grid with $H$ rows and $W$ columns. Let $(i,j)$ denote the square at the $i$-th row from the top and $j$-th column from the left.
On this grid, there are $N$ white pieces numbered $1$ to $N$. Piece $i$ is on $(A_i,B_i)$.
You can pay the cost of $C_i$ to change Piece $i$ to a black piece.
Find the minimum total cost needed to have at least one black piece in every row and every column.

Input

Input is given from Standard Input in the following format:
$H\ W\ N$
$A_1\ B_1\ C_1$
$\hspace{23pt} \vdots$
$A_N\ B_N\ C_N$

Output

Print the answer.

Constraints

$1≤H,W≤10^3$
$1 \leq N \leq 10^3$
$1 \leq A_i \leq H$
$1 \leq B_i \leq W$
$1 \leq C_i \leq 10^9$
All pairs $(A_i,B_i)$ are distinct.
There is at least one white piece in every row and every column.
All values in input are integers.

Sample 1 Input

2 3 6
1 1 1
1 2 10
1 3 100
2 1 1000
2 2 10000
2 3 100000

Sample 1 Output

1110
By paying the cost of $1110$ to change Pieces $2, 3, 4$ to black pieces, we can have a black piece in every row and every column.

Sample 2 Input

1 7 7
1 2 200000000
1 7 700000000
1 4 400000000
1 3 300000000
1 6 600000000
1 5 500000000
1 1 100000000

Sample 2 Output

2800000000

Sample 3 Input

3 3 8
3 2 1
3 1 2
2 3 1
2 2 100
2 1 100
1 3 2
1 2 100
1 1 100

Sample 3 Output

6

Source/Category