6313: ABC231 —— C - Counting 2
[Creator : ]
Description
There is a class with $N$ students. The height of the $i$-th student $(1 \leq i \leq N)$ is $A_i$.
For each $j=1,2,\ldots,Q$, answer the following question.
For each $j=1,2,\ldots,Q$, answer the following question.
- How many of the $N$ students have a height of at least $x_j$?
Input
Input is given from Standard Input in the following format:
$N\ Q$
$A_1\ A_2\ \ldots\ A_N$
$x_1$
$x_2$
$\vdots$
$x_Q$
$N\ Q$
$A_1\ A_2\ \ldots\ A_N$
$x_1$
$x_2$
$\vdots$
$x_Q$
Output
Print $Q$ lines.
The $j$-th line $(1 \leq j \leq Q)$ should contain the number of students with a height of at least $x_j$.
The $j$-th line $(1 \leq j \leq Q)$ should contain the number of students with a height of at least $x_j$.
Constraints
$1≤N,Q≤2×10^5$
$1 \leq A_i \leq 10^9$
$1 \leq x_j \leq 10^9$
All values in input are integers.
$1 \leq A_i \leq 10^9$
$1 \leq x_j \leq 10^9$
All values in input are integers.
Sample 1 Input
3 1
100 160 130
120
Sample 1 Output
2
The students with a height of at least $120$ are the $2$-nd and $3$-rd ones.
Sample 2 Input
5 5
1 2 3 4 5
6
5
4
3
2
Sample 2 Output
0
1
2
3
4
Sample 3 Input
5 5
804289384 846930887 681692778 714636916 957747794
424238336
719885387
649760493
596516650
189641422
Sample 3 Output
5
3
5
5
5