Problem5839--ABC165 —— D - Floor Function

5839: ABC165 —— D - Floor Function

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 256 MiB

Description

Given are integers $A,\ B,\ N$.
Find the maximum possible value of $floor(Ax/B)−A×floor(x/B)$ for a non-negative integer $x$ not greater than $N$.
Here $floor(t)$ denotes the greatest integer not greater than the real number $t$.

Input

Input is given from Standard Input in the following format:
$A\ B\ N$

Output

Print the maximum possible value of $floor(Ax/B)−A×floor(x/B)$ for a non-negative integer $x$ not greater than $N$, as an integer.

Constraints

$1≤A≤10^6$
$1≤B≤10^{12}$
$1≤N≤10^{12}$
All values in input are integers.

Sample 1 Input

5 7 4

Sample 1 Output

2
When $x=3,\ floor(Ax/B)−A×floor(x/B)=floor(15/7)−5×floor(3/7)=2$. This is the maximum value possible.

Sample 2 Input

11 10 9

Sample 2 Output

9

Source/Category

AtCoder_ABC 100.165.ABC165