Problem1759--CF776 - B. Sherlock and His Girlfriend

1759: CF776 - B. Sherlock and His Girlfriend

[Creator : ]
Time Limit : 2.000 sec  Memory Limit : 256 MiB  Special Judge

Description

Sherlock has a new girlfriend (so unlike him!). Valentine's day is coming and he wants to gift her some jewelry.
He bought $n$ pieces of jewelry. The $i$-th piece has price equal to $i+1$, that is, the prices of the jewelry are $2,3,4,...,n+1$.
Watson gave Sherlock a challenge to color these jewelry pieces such that two pieces don't have the same color if the price of one piece is a prime divisor of the price of the other piece. Also, Watson asked him to minimize the number of different colors used.
Help Sherlock complete this trivial task.


Sherlock 有了一个新女友(这太不像他了!)。情人节到了,他想送给女友一些珠宝当做礼物。
他买了 $n$ 件珠宝。第 $i$ 件的价值是 $i+1$。那就是说,珠宝的价值分别为 $2,3,4,...,n+1$。
Watson 挑战 Sherlock,让他给这些珠宝染色,使得一件珠宝的价格是另一件的质因子时,两件珠宝的颜色不同。并且,Watson 要求他最小化颜色的使用数。
请帮助 Sherlock 完成这个简单的任务。

Input

The only line contains single integer $n\ (1≤n≤100000)$− the number of jewelry pieces.
只有一行一个整数 $n$,表示珠宝件数。

Output

The first line of output should contain a single integer $k$, the minimum number of colors that can be used to color the pieces of jewelry with the given constraints.
The next line should consist of $n$ space-separated integers (between $1$ and $k$) that specify the color of each piece in the order of increasing price.
If there are multiple ways to color the pieces using $k$ colors, you can output any of them.
第一行一个整数 $k$,表示最少的染色数;
第二行 $n$ 个整数,表示第 $1$ 到第 $n$ 件珠宝被染成的颜色。若有多种答案,输出任意一种。

Constraints

对于全部数据,$1 \leq n \leq 10^5$。

Sample 1 Input

3

Sample 1 Output

2
1 1 2
the colors for first, second and third pieces of jewelry having respective prices $2, 3$ and $4$ are $1$, $1$ and $2$ respectively.

Sample 2 Input

4

Sample 2 Output

2
2 1 1 2
as $2$ is a prime divisor of $4$, colors of jewelry having prices $2$ and $4$ must be distinct.
因为 $2$ 是 $4$ 的一个质因子,因此第一件珠宝与第三件珠宝的颜色必须不同。

HINT

题目来源:CF776B。
相同题目:洛谷

Source/Category