Problem11345--ABC377 - E - Permute K times 2

11345: ABC377 - E - Permute K times 2

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given a permutation $P=(P_1,P_2,\ldots,P_N)$ of $(1,2,\ldots,N)$.

The following operation will be performed $K$ times:

  • For $i=1,2,\ldots,N$, simultaneously update $P_i$ to $P_{P_i}$.

Print $P$ after all operations.

Input

The input is given from Standard Input in the following format:

$N$ $K$

$P_1$ $P_2$ $\ldots$ $P_N$

Output

For the $P$ after all operations, print $P_1,P_2,\ldots,P_N$ in this order, separated by spaces.

Constraints

  • $1\leq N\leq2\times10^5$
  • $1\leq K\leq10^{18}$
  • $1\leq P_i\leq N\ (1\leq i\leq N)$
  • $P_i\neq P_j\ (1\leq i\lt j\leq N)$
  • All input values are integers.

Sample 1 Input

6 3
5 6 3 1 2 4

Sample 1 Output

6 1 3 2 4 5

With each operation, $P$ changes as follows:

  • After the first operation, $P$ is $(2,4,3,5,6,1)$.
  • After the second operation, $P$ is $(4,5,3,6,1,2)$.
  • After the third operation, $P$ is $(6,1,3,2,4,5)$.

Thus, print 6 1 3 2 4 5.

Sample 2 Input

5 1000000000000000000
1 2 3 4 5

Sample 2 Output

1 2 3 4 5

Since $P_i=i$, $P$ does not change no matter how many operations are performed.

Sample 3 Input

29 51912426
7 24 8 23 6 1 4 19 11 18 20 9 17 28 22 27 15 2 12 26 10 13 14 25 5 29 3 21 16

Sample 3 Output

18 23 16 24 21 10 2 27 19 7 12 8 13 5 15 26 17 4 3 9 1 22 25 14 28 11 29 6 20

Source/Category