11338: [yosupo] Linear Algebra - Matrix Product (Mod 2)
[Creator : ]
Description
Given $N \times M$ matrix $A$ and $M \times K$ matrix $B$, print $C = AB \bmod 2$.
When dealing with matrix input and output, please treat each row as a string concatenated with its components ($0$ or $1$).
When dealing with matrix input and output, please treat each row as a string concatenated with its components ($0$ or $1$).
Input
$N\ M\ K$
$a_{11}a_{12} \cdots a_{1M}$
$a_{21}a_{22} \cdots a_{2M}$
$\vdots$
$a_{N1}a_{N2} \cdots a_{NM}$
$b_{11}b_{12} \cdots b_{1K}$
$b_{21}b_{22} \cdots b_{2K}$
$\vdots$
$b_{M1}b_{M2} \cdots b_{MK}$
$a_{11}a_{12} \cdots a_{1M}$
$a_{21}a_{22} \cdots a_{2M}$
$\vdots$
$a_{N1}a_{N2} \cdots a_{NM}$
$b_{11}b_{12} \cdots b_{1K}$
$b_{21}b_{22} \cdots b_{2K}$
$\vdots$
$b_{M1}b_{M2} \cdots b_{MK}$
Output
$c_{11}c_{12} \cdots c_{1K}$
$c_{21}c_{22} \cdots c_{2K}$
$\vdots$
$c_{N1}c_{N2} \cdots c_{NK}$
$c_{21}c_{22} \cdots c_{2K}$
$\vdots$
$c_{N1}c_{N2} \cdots c_{NK}$
Constraints
- $1 \leq N,M,K \leq 2^{12}$
- $a_{ij},b_{ij} \in \lbrace 0,1\rbrace$
- $a_{ij},b_{ij} \in \lbrace 0,1\rbrace$
Sample 1 Input
2 2 2
11
10
10
11
Sample 1 Output
01
10
Sample 2 Input
1 2 3
10
101
010
Sample 2 Output
101
Sample 3 Input
1 1 1
0
0
Sample 3 Output
0