11334: [yosupo] Enumerative Combinatorics -Stirling Number of the First Kind (Fixed K)
[Creator : ]
Description
The signed Stirling numbers of the first kind $s(n, k)$ are defined as the coefficients in the identity
$x (x - 1) \cdots (x - (n - 1)) = \sum_{k=0}^n s(n, k) x^k.$
You are given two integers $N,K$.
Calculate $s(n, K) \bmod 998244353$ for $K \le n \le N$.
$x (x - 1) \cdots (x - (n - 1)) = \sum_{k=0}^n s(n, k) x^k.$
You are given two integers $N,K$.
Calculate $s(n, K) \bmod 998244353$ for $K \le n \le N$.
Input
$N$ $K$
Output
$s(K, K)$ $\cdots$ $s(N, K)$
Constraints
$0 \le K \le N \le 5\times 10^{5}$
Sample 1 Input
6 3
Sample 1 Output
1 998244347 35 998244128