Problem11326--[yosupo] Polynomial - Compositional Inverse of Formal Power Series (Large)

11326: [yosupo] Polynomial - Compositional Inverse of Formal Power Series (Large)

[Creator : ]
Time Limit : 2.000 sec  Memory Limit : 512 MiB

Description

You are given a formal power series $f(x) = \sum_{i=0}^{N-1} a_i x^i \in \mathbb{F}\_{998244353}[[x]]$ with $a_0 = 0, a_1 \neq 0$.
Calculate the first $N$ terms of $f^{\langle -1 \rangle}(x) = \sum_{i=0}^{\infty} b_i x^i$ with $b_0 = 0$.
In other words, find $g(x) = \sum_{i=0}^{N-1} b_i x^i \in \mathbb{F}\_{998244353}[[x]]$ such that

$
f(g(x)) \equiv g(f(x)) \equiv x \pmod{x^{N}}
$

Print the coefficients modulo $998244353$.

Input

$N$
$a_0$ $a_1$ $\cdots$ $a_{N - 1}$

Output

$b_0$ $b_1$ $\cdots$ $b_{N - 1}$

Constraints

- $2 \leq N \leq 2^{17}$
- $0 \leq a_i < 998244353$
- $a_0 = 0$
- $a_1  \neq 0$

Sample 1 Input

5
0 1 2 3 4

Sample 1 Output

0 1 998244351 5 998244339

HINT

Yosupo.

Source/Category