11320: [yosupo] Polynomial - Shift of Sampling Points of Polynomial
[Creator : ]
Description
Given sampling points $f(0), f(1), \ldots , f(N - 1)$ of polynomial $f(x) \in \mathbb{F}_{998244353}[x]$ of degree less than $N$, compute $f(c + i)$ for $i = 0, 1, \ldots , M - 1$.
Input
$N$ $M$ $c$
$f(0)$ $f(1)$ ... $f(N - 1)$
$f(0)$ $f(1)$ ... $f(N - 1)$
Output
$f(c)$ $f(c + 1)$ ... $f(c + M - 1)$
Constraints
- $1 \leq N,M \leq 2^{19}$
- $0 \leq c, f(i) < 998244353$
- $0 \leq c, f(i) < 998244353$
Sample 1 Input
4 5 3
1 4 9 16
Sample 1 Output
16 25 36 49 64
Sample 2 Input
4 5 998244349
1 8 27 64
Sample 2 Output
998244326 998244345 998244352 0 1