11207: ABC373 - G - No Cross Matching
Description
There are $2N$ points $P_1,P_2,\ldots,P_N, Q_1,Q_2,\ldots,Q_N$ on a two-dimensional plane. The coordinates of $P_i$ are $(A_i, B_i)$, and the coordinates of $Q_i$ are $(C_i, D_i)$. No three different points lie on the same straight line.
Determine whether there exists a permutation $R = (R_1, R_2, \ldots, R_N)$ of $(1, 2, \ldots, N)$ that satisfies the following condition. If such an $R$ exists, find one.
- For each integer $i$ from $1$ through $N$, let segment $i$ be the line segment connecting $P_i$ and $Q_{R_i}$. Then, segment $i$ and segment $j$ $(1 \leq i < j \leq N)$ never intersect.
Input
The input is given from Standard Input in the following format:
$N$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$
$C_1$ $D_1$
$C_2$ $D_2$
$\vdots$
$C_N$ $D_N$
Output
If there is no $R$ satisfying the condition, print -1
.
If such an $R$ exists, print $R_1, R_2, \ldots, R_N$ separated by spaces. If there are multiple solutions, you may print any of them.
Constraints
- $1 \leq N \leq 300$
- $0 \leq A_i, B_i, C_i, D_i \leq 5000$ $(1 \leq i \leq N)$
- $(A_i, B_i) \neq (A_j, B_j)$ $(1 \leq i < j \leq N)$
- $(C_i, D_i) \neq (C_j, D_j)$ $(1 \leq i < j \leq N)$
- $(A_i, B_i) \neq (C_j, D_j)$ $(1 \leq i, j \leq N)$
- No three different points lie on the same straight line.
- All input values are integers.
Sample 1 Input
3
0 0
2 4
4 2
0 2
2 0
4 4
Sample 1 Output
2 1 3
The points are arranged as shown in the following figure.
By setting $R = (2, 1, 3)$, the three line segments do not cross each other. Also, any of $R = (1, 2, 3)$, $(1, 3, 2)$, $(2, 3, 1)$, and $(3, 1, 2)$ is a valid answer.
Sample 2 Input
8
59 85
60 57
72 12
3 27
16 58
41 94
77 64
97 20
32 37
7 2
57 94
35 70
38 60
97 100
5 76
38 8
Sample 2 Output
3 5 8 2 7 4 6 1