Problem11157--ABC371 - E - I Hate Sigma Problems

11157: ABC371 - E - I Hate Sigma Problems

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given a sequence of integers $A = (A_1, A_2, \ldots, A_N)$ of length $N$. Define $f(l, r)$ as:

  • the number of distinct values in the subsequence $(A_l, A_{l+1}, \ldots, A_r)$.

Evaluate the following expression:

$\displaystyle \sum_{i=1}^{N}\sum_{j=i}^N f(i,j)$.

Input

The input is given from Standard Input in the following format:

$N$

$A_1$ $\ldots$ $A_N$

Output

Print the answer.

Constraints

  • $1\leq N\leq 2\times 10^5$
  • $1\leq A_i\leq N$
  • All input values are integers.

Sample 1 Input

3
1 2 2

Sample 1 Output

8

Consider $f(1,2)$. The subsequence $(A_1, A_2) = (1,2)$ contains $2$ distinct values, so $f(1,2)=2$.

Consider $f(2,3)$. The subsequence $(A_2, A_3) = (2,2)$ contains $1$ distinct value, so $f(2,3)=1$.

The sum of $f$ is $8$.

Sample 2 Input

9
5 4 2 2 3 2 4 4 1

Sample 2 Output

111

Source/Category