11141: ABC369 - C - Count Arithmetic Subarrays
Description
You are given a sequence of $N$ positive integers $A=(A_1,A_2,\dots,A_N)$.
Find the number of pairs of integers $(l,r)$ satisfying $1\leq l\leq r\leq N$ such that the subsequence $(A_l,A_{l+1},\dots,A_r)$ forms an arithmetic progression.
A sequence $(x_1,x_2,\dots,x_{|x|})$ is an arithmetic progression if and only if there exists a $d$ such that $x_{i+1}-x_i=d\ (1\leq i < |x|)$. In particular, a sequence of length $1$ is always an arithmetic progression.
Input
The input is given from Standard Input in the following format:
$N$
$A_1$ $A_2$ $\dots$ $A_N$
Output
Constraints
- $1\leq N \leq 2\times 10^5$
- $1\leq A_i \leq 10^9$
- All input values are integers.
Sample 1 Input
4
3 6 9 3
Sample 1 Output
8
There are eight pairs of integers $(l,r)$ satisfying the condition: $(1,1),(2,2),(3,3),(4,4),(1,2),(2,3),(3,4),(1,3)$.
Indeed, when $(l,r)=(1,3)$, $(A_l,\dots,A_r)=(3,6,9)$ is an arithmetic progression, so it satisfies the condition. However, when $(l,r)=(2,4)$, $(A_l,\dots,A_r)=(6,9,3)$ is not an arithmetic progression, so it does not satisfy the condition.
Sample 2 Input
5
1 1 1 1 1
Sample 2 Output
15
All pairs of integers $(l,r)\ (1\leq l\leq r\leq 5)$ satisfy the condition.
Sample 3 Input
8
87 42 64 86 72 58 44 30
Sample 3 Output
22