11102: 洛谷B4005 - [GESP四级] [202406]黑白方块
[Creator : ]
Description
小杨有一个 $n$ 行 $m$ 列的网格图,其中每个格子要么是白色,要么是黑色。对于网格图中的一个子矩形,小杨认为它是平衡的当且仅当其中黑色格子与白色格子数量相同。小杨想知道最大的平衡子矩形包含了多少个格子。
Input
第一行包含两个正整数 $n,m$,含义如题面所示。
之后 $n$ 行,每行一个长度为 $m$ 的 $01$ 串,代表网格图第 $i$ 行格子的颜色,如果为 $0$,则对应格子为白色,否则为黑色。
之后 $n$ 行,每行一个长度为 $m$ 的 $01$ 串,代表网格图第 $i$ 行格子的颜色,如果为 $0$,则对应格子为白色,否则为黑色。
Output
输出一个整数,代表最大的平衡子矩形包含格子的数量,如果不存在则输出 $0$。
Constraints
对于全部数据,保证有 $1\leq n,m\leq 10$。
Sample 1 Input
4 5
00000
01111
00011
00011
Sample 1 Output
16
假设 $(i,j)$ 代表第 $i$ 行第 $j$ 列,最大的平衡子矩形的四个顶点分别为 $(1,2),(1,5),(4,2),(4,5)$。