Problem11037--CF2009 - D. Satyam and Counting

11037: CF2009 - D. Satyam and Counting

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Satyam is given $n$ distinct points on the 2D coordinate plane. It is guaranteed that $0 \leq y_i \leq 1$ for all given points $(x_i, y_i)$. How many different nondegenerate right triangles$^{\text{∗}}$ can be formed from choosing three different points as its vertices?

Two triangles $a$ and $b$ are different if there is a point $v$ such that $v$ is a vertex of $a$ but not a vertex of $b$.

$^{\text{∗}}$A nondegenerate right triangle has positive area and an interior $90^{\circ}$ angle.

Input

The first line contains an integer $t$ ($1 \leq t \leq 10^4$) — the number of test cases.

The first line of each test case contains an integer $n$ ($3 \leq n \leq 2 \cdot 10^5$) — the number of points.

The following $n$ lines contain two integers $x_i$ and $y_i$ ($0 \leq x_i \leq n$, $0 \leq y_i \leq 1$) — the $i$'th point that Satyam can choose from. It is guaranteed that all $(x_i, y_i)$ are pairwise distinct.

It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.

Output

Output an integer for each test case, the number of distinct nondegenerate right triangles that can be formed from choosing three points.

Sample 1 Input

3
5
1 0
1 1
3 0
5 0
2 1
3
0 0
1 0
3 0
9
1 0
2 0
3 0
4 0
5 0
2 1
7 1
8 1
9 1

Sample 1 Output

4
0
8

The four triangles in question for the first test case:


HINT

CF2009D.

Source/Category