10967: Codility - Triangle
[Creator : ]
Description
Determine whether a triangle can be built from a given set of edges.
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
An array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
For example, consider array A such that:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20Triplet (0, 2, 4) is triangular.
Input
Write an efficient algorithm for the following assumptions:
- $N$ is an integer within the range $[0..100,000]$;
- each element of array $A$ is an integer within the range $[−2,147,483,648..2,147,483,647]$.
Output
returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
Sample 1 Input
6
10 5 2 1 8 20
Sample 1 Output
1
Sample 2 Input
4
10 50 5 1
Sample 2 Output
0