10942: ABC366 - F - Maximum Composition
[Creator : ]
Description
You are given $N$ linear functions $f_1, f_2, \ldots, f_N$, where $f_i(x) = A_i x + B_i$.
Find the maximum possible value of $f_{p_1}(f_{p_2}(\ldots f_{p_K}(1) \ldots ))$ for a sequence $p = (p_1, p_2, \ldots, p_K)$ of $K$ distinct integers between $1$ and $N$, inclusive.
Input
The input is given from Standard Input in the following format:
```
$N$ $K$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$
```
```
$N$ $K$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$
```
Output
Print the answer as an integer.
Constraints
- $1 \leq N \leq 2 \times 10^{5}$
- $1 \leq K \leq \text{min}(N,10)$
- $1 \leq A_i, B_i \leq 50$ $(1 \leq i \leq N)$
- All input values are integers.
- $1 \leq K \leq \text{min}(N,10)$
- $1 \leq A_i, B_i \leq 50$ $(1 \leq i \leq N)$
- All input values are integers.
Sample 1 Input
3 2
2 3
1 5
4 2
Sample 1 Output
26
Here are all possible $p$ and the corresponding values of $f_{p_1}(f_{p_2}(1))$:
- $p= ( 1,2 )$ : $f_1(f_2(1))=15$
- $p= ( 1,3 )$ : $f_1(f_3(1))=15$
- $p= ( 2,1 )$ : $f_2(f_1(1))=10$
- $p= ( 2,3 )$ : $f_2(f_3(1))=11$
- $p= ( 3,1 )$ : $f_3(f_1(1))=22$
- $p= ( 3,2 )$ : $f_3(f_2(1))=26$
Therefore, print $26$.
Sample 2 Input
10 3
48 40
34 22
24 37
45 40
48 31
49 44
45 40
44 6
35 22
39 28
Sample 2 Output
216223