10926: ABC364 - D - K-th Nearest
[Creator : ]
Description
There are $N+Q$ points $A_1,\dots,A_N,B_1,\dots,B_Q$ on a number line, where point $A_i$ has a coordinate $a_i$ and point $B_j$ has a coordinate $b_j$.
For each $j=1,2,\dots,Q$, answer the following question:
- Let $X$ be the point among $A_1,A_2,\dots,A_N$ that is the $k_j$-th closest to point $B_j$. Find the distance between points $X$ and $B_j$. More formally, let $d_i$ be the distance between points $A_i$ and $B_j$. Sort $(d_1,d_2,\dots,d_N)$ in ascending order to get the sequence $(d_1',d_2',\dots,d_N')$. Find $d_{k_j}'$.
Input
The input is given from Standard Input in the following format:
```
$N$ $Q$
$a_1$ $a_2$ $\dots$ $a_N$
$b_1$ $k_1$
$b_2$ $k_2$
$\vdots$
$b_Q$ $k_Q$
```
```
$N$ $Q$
$a_1$ $a_2$ $\dots$ $a_N$
$b_1$ $k_1$
$b_2$ $k_2$
$\vdots$
$b_Q$ $k_Q$
```
Output
Print $Q$ lines. The $l$-th line $(1 \leq l \leq Q)$ should contain the answer to the question for $j=l$ as an integer.
Constraints
- $1 \leq N, Q \leq 10^5$
- $-10^8 \leq a_i, b_j \leq 10^8$
- $1 \leq k_j \leq N$
- All input values are integers.
- $-10^8 \leq a_i, b_j \leq 10^8$
- $1 \leq k_j \leq N$
- All input values are integers.
Sample 1 Input
4 3
-3 -1 5 6
-2 3
2 1
10 4
Sample 1 Output
7
3
13
Let us explain the first query.
The distances from points $A_1, A_2, A_3, A_4$ to point $B_1$ are $1, 1, 7, 8$, respectively, so the 3rd closest to point $B_1$ is point $A_3$. Therefore, print the distance between point $A_3$ and point $B_1$, which is $7$.
Sample 2 Input
2 2
0 0
0 1
0 2
Sample 2 Output
0
0
There may be multiple points with the same coordinates.
Sample 3 Input
10 5
-84 -60 -41 -100 8 -8 -52 -62 -61 -76
-52 5
14 4
-2 6
46 2
26 7
Sample 3 Output
11
66
59
54
88