10911: ABC362 - C - Sum = 0
[Creator : ]
Description
You are given $N$ pairs of integers $(L_1, R_1), (L_2, R_2), \ldots, (L_N, R_N)$.
Determine whether there exists a sequence of $N$ integers $X = (X_1, X_2, \ldots, X_N)$ that satisfies the following conditions, and print one such sequence if it exists.
- $L_i \leq X_i \leq R_i$ for each $i = 1, 2, \ldots, N$.
- $\displaystyle \sum_{i=1}^N X_i = 0$.
Determine whether there exists a sequence of $N$ integers $X = (X_1, X_2, \ldots, X_N)$ that satisfies the following conditions, and print one such sequence if it exists.
- $L_i \leq X_i \leq R_i$ for each $i = 1, 2, \ldots, N$.
- $\displaystyle \sum_{i=1}^N X_i = 0$.
Input
The input is given from Standard Input in the following format:
```
$N$
$L_1$ $R_1$
$L_2$ $R_2$
$\vdots$
$L_N$ $R_N$
```
```
$N$
$L_1$ $R_1$
$L_2$ $R_2$
$\vdots$
$L_N$ $R_N$
```
Output
If no solution exists, print No
. Otherwise, print an integer sequence $X$ that satisfies the conditions in the following format:
Yes
$X_1$ $X_2$ $\ldots$ $X_N$
If multiple solutions exist, any of them will be considered correct.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $-10^9 \leq L_i \leq R_i \leq 10^9$
- All input values are integers.
- $-10^9 \leq L_i \leq R_i \leq 10^9$
- All input values are integers.
Sample 1 Input
3
3 5
-4 1
-2 3
Sample 1 Output
Yes
4 -3 -1
The sequence $X = (4, -3, -1)$ satisfies all the conditions. Other valid sequences include $(3, -3, 0)$ and $(5, -4, -1)$.
Sample 2 Input
3
1 2
1 2
1 2
Sample 2 Output
No
No sequence $X$ satisfies the conditions.
Sample 3 Input
6
-87 12
-60 -54
2 38
-76 6
87 96
-17 38
Sample 3 Output
Yes
-66 -57 31 -6 89 9