Problem10862--ABC156 - F - Modularness

10862: ABC156 - F - Modularness

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We have a sequence of $k$ numbers: $d_0,d_1,...,d_{k - 1}$.

Process the following $q$ queries in order:

-   The $i$-th query contains three integers $n_i$, $x_i$, and $m_i$. Let $a_0,a_1,...,a_{n_i - 1}$ be the following sequence of $n_i$ numbers: 
    $
     \begin{aligned} a_j = \begin{cases} x_i & ( j = 0 ) \\ a_{j - 1} + d_{(j - 1)~\textrm{mod}~k} & ( 0 < j \leq n_i - 1 ) \end{cases}\end{aligned} 
    $
     Print the number of $j~(0 \leq j < n_i - 1)$ such that $(a_j~\textrm{mod}~m_i) < (a_{j + 1}~\textrm{mod}~m_i)$.

Here $(y~\textrm{mod}~z)$ denotes the remainder of $y$ divided by $z$, for two integers $y$ and $z~(z > 0)$.

Input

Input is given from Standard Input in the following format:

```
$k$ $q$
$d_0$ $d_1$ $...$ $d_{k - 1}$
$n_1$ $x_1$ $m_1$
$n_2$ $x_2$ $m_2$
$:$
$n_q$ $x_q$ $m_q$
```

Output

Print $q$ lines.

The $i$-th line should contain the response to the $i$-th query.

Constraints

-   All values in input are integers.
-   $1 \leq k, q \leq 5000$
-   $0 \leq d_i \leq 10^9$
-   $2 \leq n_i \leq 10^9$
-   $0 \leq x_i \leq 10^9$
-   $2 \leq m_i \leq 10^9$

Sample 1 Input

3 1
3 1 4
5 3 2

Sample 1 Output

1
For the first query, the sequence {$a_j$} will be $3,6,7,11,14$.
  • $(a_0~\textrm{mod}~2) > (a_1~\textrm{mod}~2)$
  • $(a_1~\textrm{mod}~2) < (a_2~\textrm{mod}~2)$
  • $(a_2~\textrm{mod}~2) = (a_3~\textrm{mod}~2)$
  • $(a_3~\textrm{mod}~2) > (a_4~\textrm{mod}~2)$
Thus, the response to this query should be $1$.

Sample 2 Input

7 3
27 18 28 18 28 46 1000000000
1000000000 1 7
1000000000 2 10
1000000000 3 12

Sample 2 Output

224489796
214285714
559523809

Source/Category