Problem10835--ABC152 - C - Low Elements

10835: ABC152 - C - Low Elements

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Given is a permutation $P_1, \ldots, P_N$ of $1, \ldots, N$. Find the number of integers $i$ $(1 \leq i \leq N)$ that satisfy the following condition:

-   For any integer $j$ $(1 \leq j \leq i)$, $P_i \leq P_j$.

Input

Input is given from Standard Input in the following format:

```
$N$
$P_1$ $...$ $P_N$
```

Output

Print the number of integers $i$ that satisfy the condition.

Constraints

-   $1 \leq N \leq 2 \times 10^5$
-   $P_1, \ldots, P_N$ is a permutation of $1, \ldots, N$.
-   All values in input are integers.

Sample 1 Input

5
4 2 5 1 3

Sample 1 Output

3

$i=1$, $2$, and $4$ satisfy the condition, but $i=3$ does not - for example, $P_i > P_j$ holds for $j = 1$.
Similarly, $i=5$ does not satisfy the condition, either. Thus, there are three integers that satisfy the condition.

Sample 2 Input

4
4 3 2 1

Sample 2 Output

4

All integers $i$ $(1 \leq i \leq N)$ satisfy the condition.

Sample 3 Input

6
1 2 3 4 5 6

Sample 3 Output

1
Only $i=1$ satisfies the condition.

8
5 7 4 2 6 8 1 3

4

Sample 4 Input

1
1

Sample 4 Output

1

Source/Category